Направления и области применения искусственного интеллекта

Среди важнейших классов задач, которые ставились перед разработчиками интеллектуальных систем с момента определения искусственного интеллекта как научного направления (с середины 50-х годов ХХ века), следует выделить следующие направления искусственного интеллекта, которые решают задачи, что плохо поддаются формализации: доказательство теорем, распознавания изображений, машинный перевод и понимание человеческой речи, игровые программы, машинная творчество, экспертные системы. Кратко рассмотрим их сущность.

Направления и области применения искусственного интеллекта

Направления искусственного интеллекта

Доказательство теорем. Изучение приемов доказательства теорем сыграло важную роль в развитии искусственного интеллекта. Много неформальных задач, например, медицинская диагностика, применяют при решении методические подходы, которые использовались при автоматизации доказательства теорем. Поиск доказательства математической теоремы требует не только провести дедукцию, исходя из гипотез, но также создать интуитивные предположения о том, какие промежуточные утверждение следует доказать для общего доказательства основной теоремы.

Распознавание изображений. Применение искусственного интеллекта для распознавании образов позволила создавать практически работающие системы идентификации графических объектов на основе аналогичных признаков. В качестве признаков могут рассматриваться любые характеристики объектов, подлежащих распознаванию. Признаки должны быть инвариантны к ориентации, размера и формы объектов. Алфавит признаков формируется разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно сложившийся алфавит признаков. Распознавания состоит в априорном получении вектора признаков для выделенного на изображении отдельного объекта и, затем, в определении которой из эталонов алфавита признаков этот вектор отвечает.

Машинный перевод и понимание человеческой речи. Задача анализа предложений человеческой речи с применением словаря является типичной задачей систем искусственного интеллекта. Для ее решения был создан язык-посредник, облегчающий сопоставление фраз из разных языков. В дальнейшем этот язык-посредник превратилась в семантическую модель представления значений текстов, подлежащих переводу. Эволюция семантической модели привела к созданию языка для внутреннего представления знаний. В результате, современные системы осуществляют анализ текстов и фраз в четыре основных этапа: морфологический анализ, синтаксический, семантический и прагматический анализ.

Игровые программы. В основу большинства игровых программ положены несколько базовых идей искусственного интеллекта, таких как перебор вариантов и самообучения. Одна из наиболее интересных задач в сфере игровых программ, использующих методы искусственного интеллекта, заключается в обучении компьютера игры в шахматы. Она была основана еще на заре вычислительной техники, в конце 50-х годов.

В шахматах существуют определенные уровни мастерства, степени качества игры, которые могут дать четкие критерии оценки интеллектуального роста системы. Поэтому компьютерными шахматами активно занимался ученые со всего мира, а результаты их достижений применяются в других интеллектуальных разработках, имеющих реальное практическое значение.

В 1974 году впервые прошел чемпионат мира среди шахматных программ в рамках очередного конгресса IFIP (International Federation of Information Processing) в Стокгольме. Победителем этого соревнования стала шахматная программа «Каисса». Она была создана в Москве, в Институте проблем управления Академии наук СССР.

Машинная творчество. К одной из областей применений искусственного интеллекта можно отнести программные системы, способные самостоятельно создавать музыку, стихи, рассказы, статьи, дипломы и даже диссертации. Сегодня существует целый класс музыкальных языков программирования (например, язык C-Sound). Для различных музыкальных задач было создано специальное программное обеспечение: системы обработки звука, синтеза звука, системы интерактивного композиции, программы алгоритмической композиции.

Экспертные системы. Методы искусственного интеллекта нашли применение в создании автоматизированных консультирующих систем или экспертных систем. Первые экспертные системы были разработаны, как научно-исследовательские инструментальные средства в 1960-х годах прошлого столетия.

Они были системами искусственного интеллекта, специально предназначенными для решения сложных задач в узкой предметной области, такой, например, как медицинская диагностика заболеваний. Классической целью этого направления изначально было создание системы искусственного интеллекта общего назначения, которая была бы способна решить любую проблему без конкретных знаний в предметной области. Ввиду ограниченности возможностей вычислительных ресурсов, эта задача оказалась слишком сложной для решения с приемлемым результатом.

Коммерческое внедрение экспертных систем произошло в начале 1980-х годов, и с тех пор экспертные системы получили значительное распространение. Они используются в бизнесе, науке, технике, на производстве, а также во многих других сферах, где существует вполне определенная предметная область. Основное значение выражения «вполне определенное», заключается в том, что эксперт-человек способен определить этапы рассуждений, с помощью которых может быть решена любая задача по данной предметной области. Это означает, что аналогичные действия могут быть выполнены компьютерной программой.

Теперь с уверенностью можно сказать, что использование систем искусственного интеллекта открывает широкие границы.

Сегодня, экспертные системы являются одним из самых успешных применений технологии искусственного интеллекта. Поэтому рекомендуем Вам ознакомится с проблемами искусственного интеллекта.

 

Получать интересное на почту

1 комментарий для «Направления и области применения искусственного интеллекта»
Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *